
Appendix: DNNV

David Shriver, Matthew B. Dwyer, and Sebastian Elbaum

University of Virginia, Charlottesville, VA, USA
{dls2fc,matthewbdwyer,selbaum}@virginia.edu

A Verification Benchmarks

We examine the benchmarks used to evaluate each of the 13 verifiers supported
by DNNV, and determine whether each verifier can run on the benchmark out of
the box, and also whether they could be run on the benchmark when DNNV is
applied. Here we provide a short description of each of the 19 verification bench-
marks that we have identified. A short summary of some of the features of each
verifier relevant to DNNV are shown in Table 1. These features include whether
any properties cannot represent their input constraints using hyper-rectangles
(¬HR), whether any network in the benchmark contains convolution operations
(C), whether any network contains residual structures (R), and whether any
network uses any non-ReLU activation functions (¬ReLU).

The ACAS Xu (AX) benchmark, introduced for Reluplex [7], is one of the
most used verification benchmarks [2, 4, 8, 16]. The benchmark consists of 10
properties. Property φ1 is a reachability property, specifying an upper bound on
one of the 5 output variables. Properties φ5, φ6, φ9, and φ10 are all traditional
class robustness properties, specifying the desired class for the given input re-
gion. Properties φ3, φ4, φ7 and φ8 are reachability properties, specifying a set
of acceptable classes for the input region. Properties φ2 is also a reachability
property, specifying that a given output value cannot be greater than all others.
Each of the properties are applied to a subset of 45 networks trained on an air-
craft collision avoidance dataset, with 5 inputs, 5 output classes and 6 layers of
50 neurons each. The original benchmark included networks in Reluplex-NNET
format, and a custom version of Reluplex was written for each property. Later
uses of the benchmark translated the verification problems into RLV format,
which is used by Planet, BaB, and BaBSB, as well as translating the networks
into ONNX. The benchmark in ONNX and DNNP format is fully supported
by DNNV.

The Collision Detection (CD) benchmark [5], intoduced for the evaluation
of Planet, consists of 500 local robustness properties for an 80 neuron network
with a fully connected layer and max pooling layer that classifies whether 2 sim-
ulated vehicles will collide, given their current state. The verification problems,
in RLV format, are supported by Planet, BaB, and BaBSB. The problems have
also been modified to convert max pooling operations to a sequence of fully-
connected layers with ReLU activations, and then translated to Reluplex-NNET
format, enabling off the shelf support by Marabou, and a generalized version of
Reluplex. This benchmark is one of the few that is not supported by DNNV,

2 D. Shriver et al.

Table 1. Verifier benchmarks.

Features
Key Name Uses #P #N ¬HR C R ¬ReLU

AX ACAS Xu [2,4, 7, 8, 16] 10 45
CD Collision Detection [4, 5, 8] 500 1
PM Planet MNIST [5] 7 1
TS TwinStream [3] 1 81
PCA PCAMNIST [4] 12 17
MM MIPVerify MNIST [15] 10000 5
MC MIPVerify CIFAR10 [15] 10000 2
NM Neurify MNIST [6,16] 500 4
NDb Neurify Drebin [16] 500 3
NDv Neurify DAVE [16] 200 1
DZM DeepZono MNIST [12] 1700 10
DZC DeepZono CIFAR10 [12] 1700 5
DPM DeepPoly MNIST [6,13] 1500 8
DPC DeepPoly CIFAR10 [13] 800 5
RZM RefineZono MNIST [14] 800 8
RZC RefineZono CIFAR10 [14] 200 2
RPM RefinePoly MNIST [11] 600 6
RPC RefinePoly CIFAR10 [11] 300 3
VC VeriNet CIFAR10 [6] 250 1

since the network contains structures that are not easily supported by ONNX.
In particular, the max-pooling operation in the original network, applied to a
flat tensor, cannot be encoded by ONNX from their original format.

The Planet MNIST (PM) benchmark [5] is a set of 7 properties over a con-
volutional network trained on the MNIST dataset [10]. The first 4 of these are
reachability properties with hyper-rectangle input constraints, while the next
2 are local robustness properties with hyper-rectangle input constraints, and
the final property is an local robustness property with halfspace-polytope input
constraints. The original benchmark was provided in RLV format. The first 6
of these properties are currently supported by DNNV, while the final property
could be supported by DNNV with additional engineering effort.

The TwinStream (TS) benchmark [3] consists of 1 property applied to 81
networks that output a constant value. The property asserts that for all inputs,
the output of the network is positive. The original benchmark was provided in
RLV format. This benchmark is fully supported by DNNV for all verifiers.

The PCAMNIST (PCA) benchmark [4] consists of 12 reachability properties
applied to 17 networks trained on modified versions of the MNIST dataset to
predict the parity of the digit represented by the first k components of the PCA
decomposition of an image. The original benchmark was provided in RLV format.
This benchmark is fully supported by DNNV for all verifiers.

MIPVerify MNIST (MM) consists of 10000 local robustness properties ap-
plied to 5 networks trained on the MNIST dataset. The networks have varied

Appendix: DNNV 3

structures: 2 networks are fully connected and 3 are convolutional. We could
not find an available version of the benchmark used by MIPVerify to evaluate
its original input format. This benchmark is fully supported by DNNV for all
verifiers except Reluplex, which does not support convolution operations.

MIPVerify CIFAR (MC) consists of 10000 local robustness properties ap-
plied to 2 networks trained on the CIFAR10 dataset [9]. One of these networks
is a convolutional network and the other is a residual network. We could not find
an available version of the benchmark used by MIPVerify to evaluate its original
input format. This benchmark is supported by DNNV for verifiers that can sup-
port residual connections, including: Planet, DeepZono, DeepPoly, RefineZono,
and RefinePoly. While the benchmark is supported by the version of MIPVerify
used in its study, it is not supported through DNNV, since the publicly available
version of MIPVerify does not support residual connections.

The Neurify MNIST (NM) benchmark [16] consists of 500 L∞ local robust-
ness properties across 4 MNIST networks, 3 fully connected networks with 58,
110, and 1034 neurons respectively, and a convolutional network with 4814 neu-
rons. The original benchmark was provided in Neurify-NNET format, with prop-
erties hard-coded into the verifier. DNNV enables almost all verifiers to run on
this benchmark. Reluplex cannot be run due to the presence of convolutional
layers, which are not supported. MIPVerify cannot be run due to the presence
of non-hypercube input constraints. While this limitation of the verifier can be
satisfied with a property reduction for fully-connected networks, DNNV does
not currenly support such a reduction for convolutional networks.

The Neurify Drebin (NDb) benchmark [16] consists of 500 L∞ local ro-
bustness properties across 3 fully connected Drebin [1] networks with 102, 212,
and 402 neurons each. The original benchmark was provided in Neurify-NNET
format, with properties hard-coded into the verifier. This benchmark is fully
supported by DNNV for all verifiers.

The Neurify DAVE (NDv) benchmark [16] consists of 200 local reachabil-
ity properties, with 4 different types of input constraints (50 properties of each
type). The first type of input constraint is an L∞ constraint, which is equivalent
to a hyper-rectangle constraint. The second type of input constraint is an L1

constraint, which can be written as a halfspace polytope constraint. The third
and fourth type of input constraint are image brightning and contrast, which can
be written as halfspace polytope constraints. The properties are applied to a con-
volutional network for an autonomous vehicle, with 10276 neurons. The original
benchmark was provided in Neurify-NNET format, with properties hard-coded
into the verifier. Similar to the Neurify MNIST benchmark, DNNV enables al-
most all verifiers to run on this benchmark. Reluplex cannot be run, due to the
presence of convolutional layers, which are not supported, and MIPVerify cannot
be run due to the presence of non-hypercube input constraints.

The DeepZono MNIST (DZM) benchmark [12] consists of 1700 local ro-
bustness properties, subsets of which are applied to 10 networks trained on the
MNIST dataset. The networks have varied structures and activation functions:
3 networks are fully connected, 1 of which uses ReLU activations, 1 with Tanh

4 D. Shriver et al.

activations, and 1 with Sigmoid activations; 6 are convolutional, 4 of which have
ReLU activations, 1 with Tanh activations, and 1 with Sigmoid activations; and
1 is a residual network. The networks in the original benchmark were provided
in a custom human-readable text format, with properties hard-coded into the
verifier. DNNV does not increase the support for this benchmark due to the
presence of both a residual network and non-ReLU activation functions.

The DeepZono CIFAR10 (DZC) benchmark [12] consists of 1700 local ro-
bustness properties, subsets of which are applied to 5 networks trained on the
CIFAR10 dataset. The networks have varied structures and activation functions:
3 networks are fully connected, 1 of which uses ReLU activations, 1 with Tanh
activations, and 1 with Sigmoid activations; and 2 are convolutional with ReLU
activations. The networks in the original benchmark were provided in a cus-
tom human-readable text format, with properties hard-coded into the verifier.
DNNV enables VeriNet to run on this benchmark. Other verifiers are not sup-
ported due to the non-ReLU activation functions.

The DeepPoly MNIST (DPM) benchmark [13] consists of 1500 local ro-
bustness properties, subsets of which are applied to 8 networks trained on the
MNIST dataset. The networks have varied structures and activation functions:
5 networks are fully connected, 3 of which uses ReLU activations, 1 with Tanh
activations, and 1 with Sigmoid activations; and 3 are convolutional with ReLU
activations. The networks in the original benchmark were provided in a cus-
tom human-readable text format, with properties hard-coded into the verifier.
DNNV enables VeriNet to run on this benchmark. Other verifiers are not sup-
ported due to the non-ReLU activation functions.

The DeepPoly CIFAR10 (DPC) benchmark [13] consists of 800 local ro-
bustness properties, subsets of which are applied to 5 networks trained on the
CIFAR10 dataset. The networks have varied structures: 3 networks are fully con-
nected with ReLU activations; and 2 are convolutional with ReLU activations.
The networks in the original benchmark were provided in a custom human-
readable text format, with properties hard-coded into the verifier. DNNV en-
ables several additional verifiers to support this benchmark. In particular, it
enables most verifiers that can be applied to convolutional networks with relu
activations.

The RefineZono MNIST (RZM) benchmark [14] consists of 800 local ro-
bustness properties, subsets of which are applied to 8 networks trained on the
MNIST dataset. 5 networks are fully connected with ReLU activations and 3 are
convolutional with ReLU activations. The networks in the original benchmark
were provided in a custom human-readable text format, with properties hard-
coded into the verifier. DNNV enables several additional verifiers to support
this benchmark. In particular, it enables most verifiers that can be applied to
convolutional networks with relu activations.

The RefineZono CIFAR10 (RZC) benchmark [14] consists of 200 local ro-
bustness properties, subsets of which are applied to 2 networks trained on the
CIFAR10 dataset. One of the networks is fully connected with ReLU activations
and the other is convolutional with ReLU activations. The networks in the orig-

Appendix: DNNV 5

inal benchmark were provided in a custom human-readable text format, with
properties hard-coded into the verifier. DNNV enables several additional veri-
fiers to support this benchmark. In particular, it enables most verifiers that can
be applied to convolutional networks with relu activations.

The RefinePoly MNIST (RPM) benchmark [11] consists of 600 local ro-
bustness properties, subsets of which are applied to 6 networks trained on the
MNIST dataset. 4 networks are fully connected with ReLU activations and 2 are
convolutional with ReLU activations. The networks in the original benchmark
were provided in a custom human-readable text format, with properties hard-
coded into the verifier. DNNV enables several additional verifiers to support
this benchmark. In particular, it enables most verifiers that can be applied to
convolutional networks with relu activations.

The RefinePoly CIFAR10 (RPC) benchmark [11] consists of 300 local ro-
bustness properties, subsets of which are applied to 3 networks trained on the
MNIST dataset. Two of the networks are convolutional with ReLU activations
and the third is a residual network with ReLU activations. The networks in
the original benchmark were provided in a custom human-readable text format,
with properties hard-coded into the verifier. DNNV enables the Planet verifier
to support this benchmark. In particular, it enables most verifiers that can be
applied to convolutional networks with relu activations. Other verifiers do not
support the residual structure of one of the networks.

The VeriNet CIFAR10 (VC) benchmark [6] consists of 250 local robustness
properties applied to 1 convolutional network with ReLU activations. The net-
works were provided in ONNX format, with hard-coded properties. DNNV
enables support of this benchmark by most of the integrated verifiers. Relu-
plex does not support convolutional networks, and MIPVerify does not support
properties with input constraints that are not hyper-cubes.

A.1 Support

We summarize the support of each verifier for each of the benchmarks in Ta-
ble 2. Each row of this table corresponds to one of the 13 verifiers supported by
DNNV, and each column corresponds to one of the 19 benchmarks identified in
Table 1. Each cell of the table may contain a circle that identifies the support
of the verifier for the benchmark. The left half of the circle is filled black if the
verifier can support the benchmark out of the box, and is filled white other-
wise. The right half is filled black if the verifier supports the benchmark through
DNNV, filled gray if support is planned, and is filled white otherwise. Planned
support means that DNNV will support the benchmark after the implementa-
tion for halfspace polytope constraints in the input space is completed. We plan
to implement support for this feature by the notification deadline on December
23, 2020. An absent circle indicates that the verifier can not be made to support
some aspect of the benchmark. For the benchmarks shown here, this is always
due to the presence of non-ReLU activation functions in some of the networks
in the benchmarks.

6 D. Shriver et al.

Table 2. Benchmark support by each verifier. The left half of the circle is black if the
verifier can support the benchmark out of the box, and is white otherwise. The right
half is black if the verifier supports the benchmark through DNNV, gray if support
is pending DNNV implementation, and is white otherwise. An absent circle indicates
that the verifier can not be made to support some aspect of the benchmark.

Benchmark

Verifier A
X

C
D

P
M

T
S

P
C
A

M
M

M
C

N
M

N
D
b

N
D
v

D
Z
M

D
Z
C

D
P
M

D
P
C

R
Z
M

R
Z
C

R
P
M

R
P
C

V
C

Reluplex

Planet

BaB

BaBSB

MIPVerify

Neurify

DeepZono

DeepPoly

RefineZono

RefinePoly

Marabou

nnenum

VeriNet

B Property Reduction

In this section, we provide the algorithm for reducing properties to reachability
properties, as well as proofs for the equivalidity of the resulting set of reachability
properties and original property. Algorithm 1 is the overall reduction algorithm,
while Algorithm 2 and 3 are subprocedures used by the main algorithm. The
algorithm and proofs for reduction to other property types (such as robustness)
are very similar.

We assume that properties are of the form ∀x ∈ Rn : φX (x) → φY(N (x)),
where φX is a set of constraints over the inputs – the pre-condition, and φY is
a set of constraints over the outputs – the post-condition. We also assume that
constraints are represented as linear inequalities.

B.1 Proofs

In order to prove that the property reduction produces a set of correctness
problems equivalid to the original problem, we first prove the following lemmas:

Lemma 1. Let φ be a conjunction of linear inequalities over the variables xi
for i from 0 to n − 1. We can construct a halfspace polytope H = (A, b) with
Algorithm 2 such that (Ax ≤ b)⇔ (x |= φ).

Appendix: DNNV 7

Algorithm 1: Property Reduction

Input: Correctness problem 〈N , φ〉
Output: A set of robustenss problems {〈N1, φ1〉, ..., 〈Ni, φi〉}

1 begin
2 φ′ ← DNF (¬φ)
3 Ψ ← ∅
4 for disjunct ∈ φ′ do
5 φX ← extract input constraints(disjunct)
6 φY ← extract output constraints(disjunct)
7 hspoly ← disjunct to hpolytope(φY)
8 suffix← construct suffix(hspoly)
9 N ′ ← suffix ◦ N

10 φ′ ← ∀x.(x ∈ φX =⇒ N ′(x)0 > N ′(x)1)
11 Ψ ← Ψ ∪ 〈N ′, φ′〉
12 return Ψ

Proof. We first show that every linear inequality in the conjunction can be re-
formulated to the form a0x0 + a1x1 + ... + an−1xn−1 ≤ b. It is trivial to show
that inequalities with a ≥ comparison can be manipulated to an equivalent form
with ≤, and > can be manipulated to become <. It is also trivial to show
that the inequality can be manipulated to have variables on lhs and a constant
value on rhs. This results in a conjunction of linear inequalities of the form
a0x0 + a1x1 + ...+ an−1xn−1 < b and a0x0 + a1x1 + ...+ an−1xn−1 ≤ b. Finally,
the < comparison can be changed to a ≤ comparison by decrementing the con-
stant on the right-hand-side from b to b′ where b′ is the largest representable
number less than b.

We prove that linear inequalities using the < comparison can be reformulated
to use a ≤ comparison using a proof by contradiction. Assume that either a0x0+
a1x1 + ...+an−1xn−1 < b and a0x0 +a1x1 + ...+an−1xn−1 > b′ or a0x0 +a1x1 +
...+ an−1xn−1 ≥ b and a0x0 + a1x1 + ...+ an−1xn−1 ≤ b′. Then one of two cases
must be true. Either b′ < a0x0 +a1x1 + ...+an−1xn−1 < b, a contradiction, since
a0x0+a1x1+ ...+an−1xn−1 cannot be both larger than the largest representable
number less than b and also less than b.1 Or b ≤ a0x0+a1x1+...+an−1xn−1 ≤ b′,
a contradiction, since b′ < b by definition.

Given a conjunction of linear inequalities in the form a0x0 + a1x1 + ... +
an−1xn−1 ≤ b, Algorithm 2 constructs A and b with a row in A and value in b
corresponding to each conjunct. There are two cases to prove: (Ax ≤ b)→ (x |=
φ) and (x |= φ)→ (Ax ≤ b).

We prove case 1 by contradiction. Assume (Ax ≤ b) and (x 6|= φ). By the
construction of H in Algorithm 2, each conjunct of φ is exactly 1 constraint in
H. If Ax ≤ b, then all constraints in H must be satisifed, and thus all conjuncts
in φ must be satisfied and x |= φ, a contradiction.

1 We further discuss the assumption that such a number exists in Section B.2.

8 D. Shriver et al.

Algorithm 2: disjunct to hpolytope

Input: Conjunction of linear inequalities φi

Output: Halfspace polytope H
1 begin
2 H ← (A, b) where A is an (|φi|)× (m) matrix where columns correspond

to the output variables N(x)0 to N(x)m−1

3 for ineqj ∈ φi do
4 if ineqj uses ≥ then
5 swap lhs and rhs; switch inequality to ≤
6 else if ineqj uses > then
7 swap lhs and rhs; switch inequality to <

8 move variables to lhs; move constants to rhs
9 if ineqj uses < then

10 decrement rhs; switch inequality to ≤
11 Aj ← coefficients of variables on lhs
12 bj ← rhs constant

13 return H

Algorithm 3: construct suffix

Input: Halfspace polytope H = (A, b)
Output: A DNN with 2 fully connected layers S

1 begin
2 Sh ← ReLU(FullyConnectedLayer(A,−b))

3 W ←
[
1 1 ... 1
0 0 ... 0

]
4 So ← FullyConnectedLayer(W,~0)
5 S ← So ◦ Sh

6 return S

We prove case 2 by contradiction. Assume (x |= φ) and (Ax 6≤ b). By the
construction of H in Algorithm 2, each conjunct of φ is exactly 1 constraint in
H. If x |= φ, then all conjuncts in φ must be satisfied, and thus all constraints
in H must be satisifed and Ax ≤ b, a contradiction.

Lemma 2. Let H = (A, b) be a halfspace polytope such that Ax ≤ b. Then, a
DNN, Ns, can be built with Algorithm 3 that classifies whether its outputs satisfy
A(N (x)) ≤ b or not. Formally, N (x) ∈ H ⇔ Ns(x)0 ≤ Ns(x)1.

Proof. There are 2 cases:

1. N (x) ∈ H → Ns(x)0 ≤ Ns(x)1
2. Ns(x)0 ≤ Ns(x)1 → N (x) ∈ H

We prove case 1 by contradiction. Assume N (x) ∈ H and Ns(x)0 > Ns(x)1.
From Algorithm 3, each neuron in the hidden layer of Ns corresponds to one

Appendix: DNNV 9

constraint in H. The weights of each neuron are the values in the corresponding
row of A, and the bias is the negation of the corresponding value of b. If the
output N (x) satisfies the constraint, then the value of the neuron will be less
than or equal to 0, otherwise it will be greater than 0. After application of the
ReLU activation function, all neurons will be equal to 0 if their corresponding
constraint is satisfied by N (x) and greater than 0 otherwise. The first neuron
in the final layer sums all of the neurons in the hidden layer, while the second
neuron has a constant value of 0. If N (x) ∈ H, then all neurons in the hidden
layer after activation must have a value of 0 since all constraints are satisfied.
However, if all neurons have a value of 0, then their sum must also have a value
of zero, and therefore Ns(x)0 = Ns(x)1, a contradiction.

We prove case 2 by contradiction. Assume Ns(x)0 ≤ Ns(x)1 and N (x) 6∈ H.
From Algorithm 3, each neuron in the hidden layer of Ns corresponds to one
constraint in H. The weights of each neuron are the values in the corresponding
row of A, and the bias is the negation of the corresponding value of b. If the
outputN (x) satisfies the constraint, then the value of the neuron will be less than
or equal to 0, otherwise it will be greater than 0. After application of the ReLU
activation function, all neurons will be equal to 0 if their corresponding constraint
is satisfied by N (x) and greater than 0 otherwise. The first neuron in the final
layer sums all of the neurons in the hidden layer, while the second neuron has a
constant value of 0. If N (x) 6∈ H, then at least one neurons in the hidden layer
after activation must have a value greater than 0 since at least one constraint
is not satisfied. However, if any neuron has a value greater than 0, then their
sum must also have a value greater than zero, and therefore Ns(x)0 > Ns(x)1,
a contradiction.

Theorem 1. Let ψ = 〈N , φ〉 be an arbitrary correctness problem with a DNN
correctness property defined as a formula of disjunctions and conjunctions of
linear inequalities over the input and output variables of N . Property Reduction
(Algorithm 1) maps ψ to an equivalid set of correctness problems reduce(ψ) =
{〈N1, φ1〉, . . . , 〈Nk, φk〉}.

N |= ψ ⇔ ∀〈Ni, φi〉 ∈ reduce(ψ).Ni |= φi

Proof. A model that satisfies any disjunct of DNF (¬φ) falsifies φ. If φ is falsi-
fiable, then at least one disjunct of DNF (¬φ) is satisfiable.

Algorithm 1 constructs a correctness problem for each disjunct. For each
disjunct, Algorithm 1 constructs a halfspace polytope, H, which is used to
construct a suffix network, Ns. The algorithm then constructs the network
N ′(x) = Ns(N (x)). Algorithm 1 pairs each constructed network with the prop-
erty φ = ∀x.x ∈ [0, 1]n → N ′(x)0 > N ′(x)1. A violation occurs only when
N ′(x)0 ≤ N ′(x)1. By Lemmas 1 and 2, we get that N ′(x)0 ≤ N ′(x)1 if and only
if N ′(x) ∈ H. If N ′(x) ∈ H then N ′(x) satisfies the disjunct and is therefore a
violation of the original property.

10 D. Shriver et al.

B.2 On the Existance of a Bounded Largest Representable Number

Our proof that property reduction generates a set of robustness problems equiv-
alid to an arbitrary problem relies on the assumption that strict inequalities can
be converted to non-strict inequalities. To do so we rely on the existance of a
largest representable number that is less than some given value. While this is not
necessarily true for all sets of numbers (e.g., R), it is true for for most numeric
representations used in computation (e.g., IEEE 754 floating point arithmetic).

C DNN Simplifications

In this section, we describe the DNN simplifications currently performed by
DNNV. This is not a full list of all possible simplifications, but have been useful
for some networks we have encountered in practice.

C.1 BatchNormalization Simplification

BatchNormalization simplification removes BatchNormalization operations from
a network by combining them with a preceeding Conv operation or Gemm op-
eration. If no applicable preceeding layer exists, the batch normalization layer
is converted into an equivalent Conv operation. This simplification can decrease
the number of operations in the model and increase verifier support, since many
verifiers do not support BatchNormalization operations.

C.2 Identity Removal

DNNV removes many types of identity operations from DNN models, including
explicit Identity operations, Concat operations with a single input, and Flatten
operations applied to flat tensors. Such operations can occur in DNN models
due to user error, or through automated processes, and their removal does not
affect model behavior.

C.3 Convert MatMul followed by Add to Gemm

DNNV converts instances of MatMul (matrix multiplication) operations, fol-
lowed immediately by Add operations to an equivalent Gemm (generalized ma-
trix multiplication) operation. The Gemm operation generalizes the matrix mul-
tiplication and addition, and can simplify subsequent processing and analysis of
the DNN.

C.4 Combine Consecutive Gemm

DNNV combines two consecutive Gemm operations into a single equivalent
Gemm operation, reducing the number of operations in the DNN.

Appendix: DNNV 11

C.5 Combine Consecutive Conv

In special cases, DNNV can combine consecutive Conv (convolution) operations
into a single equivalent Conv operation, reducing the number of operations in the
DNN. Currently, DNNV can combine Conv operations when the first Conv uses
a diagonal 1 by 1 kernel with a stride of 1 and no zero padding, and the second
Conv has no zero padding. This case can occur after converting a normalization
layer (such as BatchNormalization) to a Conv operation.

C.6 Bundle Pad

DNNV can bundle explicit Pad operations with an immediately succeeding Conv
or MaxPool operation. This both simplifies the DNN model, and increases sup-
port, since many verifiers do not support explicit Pad operations (but can sup-
port padding as part of a Conv or MaxPool operation).

C.7 Move Activations Backward

DNNV moves activation functions through reshaping operations to immediately
succeed the most recent non-reshaping operation. This is possible since activation
functions are element-wise operations. This transformation can simplify pattern
matching in later analysis steps by reducing the number of possible patterns.

References

1. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: DREBIN:
effective and explainable detection of android malware in your pocket.
In: 21st Annual Network and Distributed System Security Symposium,
NDSS 2014, San Diego, California, USA, February 23-26, 2014. The
Internet Society (2014), https://www.ndss-symposium.org/ndss2014/

drebin-effective-and-explainable-detection-android-malware-your-pocket

2. Bak, S., Tran, H.D., Hobbs, K., Johnson, T.T.: Improved geometric path enumera-
tion for verifying relu neural networks. In: Lahiri, S.K., Wang, C. (eds.) Computer
Aided Verification. pp. 66–96. Springer International Publishing, Cham (2020)

3. Bunel, R., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Piecewise linear neu-
ral network verification: A comparative study. CoRR abs/1711.00455v1 (2017),
http://arxiv.org/abs/1711.00455v1

4. Bunel, R.R., Turkaslan, I., Torr, P.H.S., Kohli, P., Mudigonda, P.K.: A unified
view of piecewise linear neural network verification. In: NeurIPS. pp. 4795–4804
(2018)

5. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: Automated Technology for Verification and Analysis - 15th International
Symposium, ATVA 2017, Pune, India, October 3-6, 2017, Proceedings. pp. 269–
286 (2017). https://doi.org/10.1007/978-3-319-68167-2 19, https://doi.org/10.
1007/978-3-319-68167-2_19

12 D. Shriver et al.

6. Henriksen, P., Lomuscio, A.: Efficient neural network verification via adaptive re-
finement and adversarial search. In: Giacomo, G.D., Catalá, A., Dilkina, B., Mi-
lano, M., Barro, S., Bugaŕın, A., Lang, J. (eds.) ECAI 2020 - 24th European
Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago de
Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference
on Prestigious Applications of Artificial Intelligence (PAIS 2020). Frontiers in Ar-
tificial Intelligence and Applications, vol. 325, pp. 2513–2520. IOS Press (2020).
https://doi.org/10.3233/FAIA200385, https://doi.org/10.3233/FAIA200385

7. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient SMT solver for verifying deep neural networks. In: Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part I. pp. 97–117 (2017). https://doi.org/10.1007/978-
3-319-63387-9 5, https://doi.org/10.1007/978-3-319-63387-9_5

8. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., et al.: The Marabou framework for verification
and analysis of deep neural networks. In: International Conference on Computer
Aided Verification. pp. 443–452. Springer (2019)

9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images
(2009)

10. LeCun, Y., Cortes, C., Burges, C.J.: The mnist database of handwritten digits
11. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron

convex barrier for neural network certification. In: Wallach, H.M., Larochelle,
H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Van-
couver, BC, Canada. pp. 15072–15083 (2019), http://papers.nips.cc/paper/

9646-beyond-the-single-neuron-convex-barrier-for-neural-network-certification

12. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31, pp. 10802–10813. Curran Associates, Inc. (2018), http://papers.

nips.cc/paper/8278-fast-and-effective-robustness-certification.pdf

13. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. PACMPL 3(POPL), 41:1–41:30 (2019)

14. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: Boosting robustness certifica-
tion of neural networks. In: 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net (2019),
https://openreview.net/forum?id=HJgeEh09KQ

15. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019), https://openreview.net/forum?id=HyGIdiRqtm

16. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: NeurIPS. pp. 6369–6379 (2018)

